Singing Voice Separation from Monaural Recordings

نویسندگان

  • Yipeng Li
  • DeLiang Wang
چکیده

Separating singing voice from music accompaniment has wide applications in areas such as automatic lyrics recognition and alignment, singer identification, and music information retrieval. Compared to the extensive studies of speech separation, singing voice separation has been little explored. We propose a system to separate singing voice from music accompaniment from monaural recordings. The system has three stages. The singing voice detection stage partitions and classifies an input into vocal and non-vocal portions. Then the predominant pitch detection stage detects the pitch contour of the singing voice for vocal portions. Finally the separation stage uses the detected pitch contour to group the time-frequency segments of the singing voice. Quantitative results show that the system performs well in singing voice separation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Singing-Voice Separation from Monaural Recordings using Deep Recurrent Neural Networks

Monaural source separation is important for many real world applications. It is challenging since only single channel information is available. In this paper, we explore using deep recurrent neural networks for singing voice separation from monaural recordings in a supervised setting. Deep recurrent neural networks with different temporal connections are explored. We propose jointly optimizing ...

متن کامل

Spectro-temporal modulation based singing detection combined with pitch-based grouping for singing voice separation

A spectro-temporal modulation based singing voice detection cascaded with a Viterbi based pitch tracking algorithm is proposed in this paper for singing-voice separation from monaural recordings. To detect the singing voice, the spectrotemporal modulation energy related to voice harmonics is extracted using a spectro-temporal modulation analysis framework developed for the Fourier spectrogram. ...

متن کامل

Singing-voice Separation Using Deep Recurrent Neural Networks

In this paper, we explore using deep recurrent neural networks for singing voice separation from monaural recordings in a supervised setting. We propose jointly optimizing the networks for multiple source signals by including the separation step as a nonlinear operation in the last layer. Discriminative training objectives are further explored to enhance the source to interference ratio. The al...

متن کامل

Pitch Estimation of Singing Voice From Monaural Popular Music Recordings

A singing voice separation system is a hard yet popular task in the field of music information retrieval (MIR). If successfully separated, a number of algorithms can be applied to vocal melody for any possible application. In this study, we applied a pitch estimation algorithm after separating a singing voice from background music based on the implementation of REPET [1]. Then we evaluated our ...

متن کامل

Singing Voice Separation Using Spectro-Temporal Modulation Features

An auditory-perception inspired singing voice separation algorithm for monaural music recordings is proposed in this paper. Under the framework of computational auditory scene analysis (CASA), the music recordings are first transformed into auditory spectrograms. After extracting the spectral-temporal modulation contents of the timefrequency (T-F) units through a two-stage auditory model, we de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006